PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry.
نویسندگان
چکیده
Previous studies have demonstrated that a small subpopulation of brain tumor cells share key characteristics with neural stem/progenitor cells in terms of phenotype and behavior. These findings suggest that brain tumors might contain "cancer stem cells" that are critical for tumor growth. However, the molecular pathways governing such stem cell-like behavior remain largely elusive. Our previous study suggests that the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, one of the most frequently mutated genes in glioblastomas, restricts neural stem/progenitor cell proliferation in vivo. In the present study, we sought to determine the role of PTEN in long-term maintenance of stem cell-like properties, cell cycle entry and progression, and growth factor dependence and gene expression. Our results demonstrate an enhanced self-renewal capacity and G(0)-G(1) cell cycle entry and decreased growth factor dependency of Pten null neural/stem progenitor cells. Therefore, loss of PTEN leads to cell physiological changes, which collectively are sufficient to increase the pool of self-renewing neural stem cells and promote their escape from the homeostatic mechanisms of proliferation control.
منابع مشابه
Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation
Pluripotent embryonic stem cells have a shortened cell cycle that enables their rapid proliferation. The embryonic stem cell-specific miR-290 and miR-302 microRNA families promote proliferation whereas let-7 microRNAs inhibit self-renewal, and promote cell differentiation. Lin28 suppresses let-7 expression in embryonic stem cells. Here to gain further insight into mechanisms controlling embryon...
متن کاملMethamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate.
Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/...
متن کاملGABA regulates stem cell proliferation before nervous system formation.
Histone H2AX-Dependent GABAA Receptor Regulation of Stem Cell Proliferation. Andäng M, Hjerling-Leffler J, Moliner A, Lundgren TK, Castelo-Branco G, Nanou E, Pozas E, Bryja V, Halliez S, Nishimaru H, Wilbertz J, Arenas E, Koltzenburg M, Charnay P, El Manira A, Ibañez CF, Ernfors P. Nature 2008;451(7177):460–464. Stem cell self-renewal implies proliferation under continued maintenance of multipo...
متن کاملMyostatin negatively regulates satellite cell activation and self-renewal
Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. Here we show that myostatin, a TGF-beta member, signals satellite cell quiescence and also negatively regulates satellite cell self-renewal. BrdU labeling in vivo revealed that, among the Myostatin-deficient satellite cells, higher numbers of satellite cells are activated as compared with wild type....
متن کاملp53 suppresses the self-renewal of adult neural stem cells.
There is increasing evidence that tumors are heterogeneous and that a subset of cells act as cancer stem cells. Several proto-oncogenes and tumor suppressors control key aspects of stem cell function, suggesting that similar mechanisms control normal and cancer stem cell properties. We show here that the prototypical tumor suppressor p53, which plays an important role in brain tumor initiation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 1 شماره
صفحات -
تاریخ انتشار 2006